ISS Progress 59 cargo resupply ship burns up

28 Apr


Final mission status and updates:

• Updated: May 8, 2015 @ 11:30 a.m. EDT (15:30 UTC).
• Tracking data from USSTRATCOM indicates Progress 59 burnt up May 8, 2015 at 2:20 a.m. UTC, +/- 1 minute.
• Progress entered the atmosphere off the west coast of southern Chile at a distance of 1,300 to 350 km.
• It is possible some pieces of debris survived re-entry, and could have landed anywhere from hundreds of kilometers off the west coast of Chile, to hundreds of kilometers off the east coast (meaning some could have fallen on land).
• At time of this writing, there are no reports of re-entry being sighted nor any debris being located.
• The Progress’ Soyuz rocket launched April 28 on schedule with the unmanned cargo ship carrying 2,357 kg of cargo to the International Space Station.
• About nine minutes after launch, as Progress separated from the Soyuz, the cargo ship failed to activate and communicate with the ground as expected.
• Data from Progress showed the fuel system did not pressurized and multiple telemetry sensors required for ISS docking failed.
• Video downloaded from Progress showed the spacecraft in a spin.
• Tracking data showed nearly 50 pieces of spacecraft debris in the vicinity of Progress while in orbit, though the precise nature of the debris is unknown (it could have been debris from the upper stage of the rocket or Progress itself).
• The six crew on board the ISS are in no danger as a result of the lost cargo delivery; they have ample supplies on board for many months.
• The next two cargo deliveries to the ISS are set for June (SpaceX Dragon, CRS-7) and August (JAXA, HTV-5).
• The investigation into this incident is currently focusing on the third stage of the Soyuz rocket.

Map showing the location of Progress' decay position, according to USSTRATCOM, as well as the Russian Federal Space Agency (note Roscosmos appears to have misjudged re-entry by about 15 minutes early). Image Credit: Spaceflight101

Map showing the location of Progress’ decay position according to USSTRATCOM as well as the Russian Federal Space Agency (note Roscosmos appears to have misjudged re-entry by about 15 minutes early). Image Credit: Spaceflight101

The launch of Progress 59 (M-27M) went off smoothly at 07:09:50 UTC on April 28 from Baikonur Cosmodrome in Kazakhstan. The unmanned Progress resupply ship was atop an upgraded Soyuz 2-1A rocket, the second ISS resupply flight to make use of the upgraded rocket (the older version, the Soyuz U, had been in service since 1973). Progress 59 was being launched on an express, four hour flight to the ISS, with a fallback two day rendezvous option.

Eight minutes, 48 seconds after launch with Progress reaching its preliminary orbit, it separated from the third stage of the Soyuz rocket. It is now believed that trouble began around this time.

After separation, Progress was designed to deploy navigational antennas, collect flight telemetry, and pressurize the propulsion system manifolds. As ground controllers struggled to maintain contact with Progress, it appeared that systems were not functioning correctly on board the spacecraft.

On subsequent passes within range of ground communication stations, Russian controllers attempted to send commands to spacecraft and download data. Progress has refused commands from the ground and has been unable to provide much useful telemetry data, though it did downlink television video data successfully Tuesday morning and supply data showing that multiple telemetry sensors have failed. The fact that the command/telemetry system and the TV system uses different downlink paths has been suggested as the reason that one system is able to function while the other does not.

The downloaded TV video showed the spacecraft in a 60° per second spin, or tumble. Causes for this could be a stuck thruster, separation from the Soyuz not being clean, or possibly a system leak.

Tracking data also reported that Progress was in an orbit that is more elliptical than intended (data showed the orbit to be 193.8 by 278.6 km, versus the intended 193 by 238 km orbit). This suggests the Soyuz rocket may have slightly over-performed, though does not immediately account for the Progress’ failures. However, it has been speculated an improper shutdown of the Soyuz third stage engine prior to Progress separation may be the culprit.

More recent tracking data also indicates there is debris present in the vicinity of Progress, bolstering the possibility that the Progress/Soyuz separation was botched. It is unknown though whether the debris is from Progress or the third stage of the Soyuz rocket body.


Related:
Taking spaceflight for granted
Watch NASA TV live


Despite the best efforts of mission controllers in Moscow and Houston, they were unable to salvage Progress 59 and the craft re-entered the Earth’s atmosphere uncontrolled on May 8, 2015 at 2:20 a.m. UTC, plus or minus one minute according to US military tracking. Based on this time frame, the re-entry took place off the west coast of southern Chile.

If the re-entry took place at the earliest part of the window (2:19 a.m.), Progress would have been 1,300 km off the coast. If decay occurred at the end of the window (2:21 a.m.) Progress would have been 350 km west of Chile.

Even though re-entry was uncontrolled, there was little danger to anyone on the ground. The Progress vehicles are designed to be disposable and burn up upon re-entry. Still, it is possible that some of the heavy and dense parts of the spacecraft could have survived – namely the docking ring and propellant tanks. Any debris that did survive re-entry could be scattered from several hundred kilometers off the west coast of Chile to severl hundred kilometers off the east coast – nearly to the Falkland Islands. This area also includes land in southern South America.

At this time, there are no reports of anyone witnessing the fiery re-entry or finding any debris on land. It’s very unlikely that any debris that landed in water would be found.


A pass of Progress 59 captured from the ground in Buenos Aires a couple hours prior to re-entry.

It is also important to note that the six crew currently on board the ISS are in no danger. The crew has ample supplies on board the station to survive productively for many months. However it should be expected that the cargo manifests for two upcoming ISS cargo flights will be adjusted to make up for higher priority cargo lost on this flight.

The next scheduled cargo flight to the ISS is a SpaceX Dragon capsule. It’s currently scheduled to launch on June 19, 2015 from Florida on mission CRS-7. Following CRS-7, a Japanese Space Agency (JAXA) HTV cargo ship is set to launch in August on mission HTV-5. There is also presently a Dragon docked with the ISS as mission CRS-6; it will depart the station and land back on Earth in mid-May.

Of concern for future flights, including manned launches, is the commonality between the Progress launch vehicle and the rocket used to launch Soyuz TMA capsules – which carry crew to the ISS. If there has been a problem with the common Soyuz upper stages, that problem would have to be addressed prior to use on future missions. Problems with the Soyuz third stage are currently being investigated as the cause of the Progress 59 failure.


Skip ahead to 10:50 mark for launch.

Read more on Spaceflight 101

Tags: , , ,

STS-100: Canadarm2 takes flight

26 Apr
Canadarm2 catches a visiting SpaceX Dragon cargo capsule at the International Space Station. (Credit: NASA)

Canadarm2 catches a visiting SpaceX Dragon cargo capsule at the International Space Station. (Credit: NASA)

As part of a special two-part special looking at STS-100 and the installation of Canadarm2, I conducted interviews with the Canadian Space Agency Flight Controller Supervisor Mathieu Caron and Canadian Astronaut Chris Hadfield. Part one of the special with Mathieu Caron aired April 27, 2015 (listen to the segment here) and part two with Chris Hadfield aired on May 4, 2015 (listen to that segment here).

York Universe airs live every Monday at 9:00 p.m. ET (1:00 a.m. UTC, Tuesday) on Astronomy.FM – the voice of astronomy on the internet.


STS-100 was a flight of the Space Shuttle Endeavour from April 19-May 1, 2001 (11 days, 21 hours). The flight was commanded by Kent Rominger, piloted by Jeffrey Ashby, and carried five Mission Specialists: Chris Hadfield (CSA), John Phillips, Scott Parazynski, Umberto Guidoni (ESA), and Yuri Lonchakov (RKA).

It’s been suggested this flight was the pinnacle of Canada in space. And this is arguably true, though there have been several other significant Canadian missions to be sure: the launch of Alouette or Chris Hadfield commanding the ISS, to name only two possibilities. The point of this though is to highlight the importance of STS-100 to Canada and the international space community, rather than argue about which the ‘most’ important contribution is.

The primary goal of STS-100 was to deliver and install to the fledgling International Space Station the new robotic arm, Canadarm2. Along to head this effort was Canadian Space Agency Astronaut Chris Hadfield – and installing the next generation arm required two spacewalks for Hadfield and Parazynski. Hadfield’s EVA on STS-100 was also the first spacewalk in history for a Canadian.

In total, the pair spent 14 hours, 50 minutes ‘outside’ in order to accomplish the goal.

Chris Hadfield on the first Canadian spacewalk on April 22, 2001. (Credit: NASA)

Chris Hadfield on the first Canadian spacewalk on April 22, 2001. (Credit: NASA)

Canadarm2 is 17.6 m (58 feet) long and has seven powered joints. It weighs 1,800 kg and is capable of moving payloads up to 116,000 kg!

It can be controlled from on board the ISS, or remotely from robotics stations at mission control centres around the world, including the CSA’s John. H Chapman Space Centre just outside Montreal.


Canadarm2 was (of course) based on the design of the Space Shuttle Canadarm, first launched in 1981 on STS-2. Canadarm (1) was 15.2 m (50 feet) long. In all five Shuttle Canadarm’s were built, with a redesign in the 1990’s to increase the arms’ ability to move larger objects to support ISS construction (the strength was increased by an order of magnitude, going from 332.5 kg up to 3,293 kg).

Towards the end of STS-100 once Hadfield and Parazynski had completed its installation, Canadarm2 was powered up for the first time in space on April 28, 2001.

And Canadarm2’s first objective? Link up with the Shuttle Canadarm to return the new arms cargo palette to Endeavour’s cargo bay. It was a remarkable Canadian robotic handshake in space.

The Canadian Handshake: Canadarm and Canadarm2 connect in space for the first time on April 28, 2001. (Credit: NASA)

The Canadian Handshake: Canadarm and Canadarm2 connect in space for the first time on April 28, 2001. (Credit: NASA)

Since then, Canadarm2 has been invaluable in both the construction and operations of the ISS – including catching visiting cargo spacecraft and docking them to the station on a regular basis. It is not an exaggeration to say that the ISS would not have been able to have been constructed without Canadarm2.

Look back at STS-100 with the astronauts who flew the mission:

Canadarm2 is able to move itself around on the ISS by making use of either the Mobile Transporter (a rail structure that runs the length of the ISS) or by moving end-over-end, sort of like an inch-worm, and grappling Power Data Grapple Fixtures that provide a physical connection as well as electrical and data connectivity. With these two methods within arm’s reach, Canadarm2 is able to be work from any location along the ISS’s main truss.

Canadarm2 has also since been joined on the ISS by a second Canadian robotic handyman: DEXTRE, which arrived in March 2008 on STS-123 (read more about DEXTRE here).

With these innovations – and others – Canada is making a name for being a leader in space robotics, and STS-100 surely cemented that reputation.

Canadian space robots: DEXTRE catches a ride at the end of Canadarm2 on the ISS. (Credit: NASA)

Canadian space robots: DEXTRE catches a ride at the end of Canadarm2 on the ISS. (Credit: NASA)

Tags: , , , , , ,

Celebrate the Hubble Space Telescope’s 25 years in space – #Hubble25

23 Apr

The Hubble Space Telescope was launched on April 24, 1990 – a quarter century ago! Since then (admittedly with a couple hiccups) it has been peering deeper into the cosmos than any telescope in human history. We have learned more about the origin of the universe, the makeup of galaxies, and distant worlds though Hubble’s eye – and with great effort from many researchers around the world.

Hubble is a joint project of NASA and the European Space Agency (ESA). Hubble weighs in at 11,000 kg, is 13.2 m by 4.2 m, and has a 2.4 m diameter primary mirror. Hubble coasts along in orbit at a cool 25,600 km/h at an altitude of 555 km above the surface of the Earth.

Hubble’s direct successor in space will be the James Webb Space Telescope, set for launch in 2018 – though Hubble is still expected to be in operation. Numerous next generation ground-based telescopes will also come online between 2020-2025, including the Thirty Meter Telescope (read in detail about TMT here).

To celebrate Hubble’s 25th birthday, the Hubble team released a new image from Hubble today: an image of the cluster Westerlund 2 and its surroundings.

This NASA/ESA Hubble Space Telescope image of the cluster Westerlund 2 and its surroundings has been released to celebrate Hubble’s 25th year in orbit and a quarter of a century of new discoveries, stunning images and outstanding science. The image’s central region, containing the star cluster, blends visible-light data taken by the Advanced Camera for Surveys and near-infrared exposures taken by the Wide Field Camera 3. The surrounding region is composed of visible-light observations taken by the Advanced Camera for Surveys. (Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team)

This NASA/ESA Hubble Space Telescope image of the cluster Westerlund 2 and its surroundings has been released to celebrate Hubble’s 25th year in orbit and a quarter of a century of new discoveries, stunning images and outstanding science. The image’s central region, containing the star cluster, blends visible-light data taken by the Advanced Camera for Surveys and near-infrared exposures taken by the Wide Field Camera 3. The surrounding region is composed of visible-light observations taken by the Advanced Camera for Surveys. (Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team)

Even after 25 years, Hubble continues to impress with its images and scientific discovery to this day. For instance, Hubble data recently contributed to strengthening the hypothesis that Jupiter’s largest moon Ganymede has a massive subsurface ocean of liquid water.

One of the best videos I’ve been able to find that offers an overview of the Hubble mission is from the telescope’s 15th birthday, back on April 24, 2005. It’s worth a watch, and of course add another decade (!!) worth of discovery on top:

On top of several physical celebrations going on around the world for the occasion of #Hubble25, there is also a lot of great content on social media:



And remember a couple years ago when the Defense Department donated two better-than-Hubble space telescopes to NASA? Read here for that one.

It’s a big universe and we need all the eyes we can get to help unravel its mysteries.

The Canadarm on board The Space Shuttle Discovery releases Hubble in April 1990. (Credit: NASA/ESA)

The Canadarm on board The Space Shuttle Discovery releases Hubble in April 1990. (Credit: NASA/ESA)

And a fun (patriotic Canadian) fact: the last piece of hardware to come into physical contact with Hubble was the Canadarm on board the Space Shuttle Atlantis on mission STS-125 in May 2009, following the conclusion of Hubble Servicing Mission 4, the last mission to visit the telescope:

Canadarm lifts the Hubble Space Telescope out of the payload bay of Atlantis, moments before it is released into space following the successful repair mission of STS-125. (Credit: NASA)

Canadarm lifts the Hubble Space Telescope out of the payload bay of Atlantis, moments before it is released into space following the successful repair mission of STS-125. (Credit: NASA)

Tags: , , , , , ,

All about the Thirty Meter Telescope (TMT)

8 Apr

The Thirty Meter Telescope (TMT) will help solve some of the deepest mysteries of the universe and will be the largest, most advanced telescope ever built when it opens.

TMT has also been in the news off and on for a number of years as the project has moved through its proposal and design phases, dating back to 2003.

But recently it has been in the news in a big way (particularly in Canada), as Prime Minister Stephen Harper and Industry Minister James Moore announced that the Canadian government would provide an additional $243.5 million (approx. $200 million USD) over 10 years in funding for the construction of the next-generation telescope.

This money will be spent primarily in three areas: construction of the metal frame for the telescope dome (to be built by Dynamic Structures Ltd.); Supplying the advanced adaptive optics system, a centrepiece of the TMT design (the National Research Council of Canada is managing this), and; operating costs.

Canada already contributed about $30 million during the design phase, and the Association of Canadian Universities for Research in Astronomy (ACURA) has played a significant role – alongside the University of California (UC) and the California Institute of Technology (Caltech).

What follows is a plain language overview of the TMT project and what the Canadian funding means for it.

A schematic of the Thirty Meter Telescope (Source: TMT).

A schematic of the Thirty Meter Telescope (Source: TMT).

The Thirty Meter Telescope will be, in short, the largest and most advanced ground-based optical observatory ever built when it is completed sometime in 2022.

The project is led by a consortium of UC and Caltech. Those two schools between them account for a 25% stake in the project. Japan is also on board with a 20% stake. Canada comes next, with the $243.5 million accounting for a 15-20% stake. China and India each have a 10% stake.

With Canada’s contribution in place, the TMT has achieved 80% of the capital funding required, and the team continues to negotiate with other potential partners to secure the remaining funds. Construction though is underway, with the ground-breaking that took place in October 2014 officially kicking it off.

There are whispers the U.S. will come on board via a National Science Foundation (NSF) grant, but as yet that hasn’t happened.

TMT will be built atop the Mauna Kea volcano in Hawaii, with an elevation of about 4 kilometers.

The observatories atop Mauna Kea, Hawaii include, from left to right foreground:  the UH 0.6-meter telescope (small white dome), the UK Infrared Telescope, the UH 2.2-meter telescope, the Gemini Northern 8-meter telescope (silver, open) and the Canada-France-Hawaii Telescope. On the right in the background are the NASA Infrared Telescope Facility (silver), the twin domes of the Keck Observatory and the Subaru Telescope (Source: University of Hawaii).

The observatories atop Mauna Kea, Hawaii include, from left to right foreground: the UH 0.6-meter telescope (small white dome), the UK Infrared Telescope, the UH 2.2-meter telescope, the Gemini Northern 8-meter telescope (silver, open) and the Canada-France-Hawaii Telescope. On the right in the background are the NASA Infrared Telescope Facility (silver), the twin domes of the Keck Observatory and the Subaru Telescope (Source: University of Hawaii).

In telescopes, size matters, and so the TMT’s primary mirror at 30m (98 feet) will be three times larger than the current largest, the Gran Telescopio Canaris (10.4m, opened in 2007) at La Palma in Spain’s Canary Islands. The extra diameter will provide TMT with ten times the light collection ability.

The same size comparison holds true for the twin W. M. Keck Observatories (10m each), which will coincidentally be TMT’s neighbours at Mauna Kea. And while second in size, Keck is often considered one of the most advanced optical telescopes currently in operation thanks to the highly advanced adaptive optics they were retrofitted with about a decade ago (more on adaptive optics later). Keck 1 opened in 1993 with Keck 2 following in 1996.

Another famous telescope – perhaps the most famous – is of course the Hubble Space Telescope, launched in 1990. TMT will have 144 times (!!) the light collection ability over Hubble’s 2.4m mirror. TMT will also provide about 10 times better image resolution.

The Horsehead Nebula (Source: NASA/Hubble Space Telescope).

The Horsehead Nebula (Source: NASA/Hubble Space Telescope). TMT will have 144 times more light collection and 10 times better resolution than Hubble.

Though by the time TMT is completed, there will be other kids on the telescopic block.

The Giant Magellan Telescope at Las Campanas Observatory in Chile will likely have opened – it’s currently looking to be completed in 2021. Though at 25.4m, the GMT’s rein as world’s largest telescope will be short-lived. Of course, 25.4m is nothing to sneeze at – it will still be 2.5 times larger than the present-day biggest.

Similarly, TMT will only be the world’s largest for a few short years. Sometime around 2024-2025 the European Extremely Large Telescope (don’t you love the naming convention for these bad boys?) is expected to be completed at the European Southern Observatory (ESO) in the Atacama Desert, Chile. The E-ELT’s primary mirror will be fully 39.3m in diameter.

These three mammoth ground telescopes – the GMT, TMT, and E-ELT – represent a generational leap forward in terms of size, technology, and ability to peer deeper into the cosmos than ever before.

As a scale comparison, imagine a professional baseball stadium. If the TMT were placed on the pitcher’s mound, the primary mirror would nearly fill the entire infield. The structure is also 22-stories tall.

But why does size matter so much?

It matters because the size of the mirror is directly proportional to the amount of light the telescope has the ability to collect. And more light means the telescope is able to produce sharper images and detect fainter objects, allowing the astronomers to see objects and detail that otherwise wouldn’t be possible.

In your own life, consider the difference between a point and shoot camera and a D-SLR. In some cases the D-SLR has a better sensor than the P&S, but not always. So why does the D-SLR capture better images (particularly in low-light), assuming an equivalent sensor? Because the optics in front of the sensor capture more light, allowing the shutter to fire faster, and in turn create a sharper image. (I realize this isn’t a complete analogy, but I hope it sheds some [pardon the pun] light on why size matters.)

But, if it’s so important to have telescopes collect the maximum amount of light, why haven’t they been built this large before? A couple reasons.

First, as it often boils down to, is money. Building large telescopes is expensive (both TMT and E-ELT come with a total price tag between $1 and $1.5 billion each). But money alone only really tells part of the story here.

The underlying basis for why telescopes haven’t been built this large before is the second reason: technology. The relevant advances in technology are similarly revealed mainly in two places: segmented mirrors and adaptive optics.

Segmentation allows huge mirrors to be broken down into smaller pieces, which in turn allows for more straight forward construction, transportation, maintenance, and so on – all of which reduces cost. Large mirrors are extremely difficult to manufacture, heavy to support, and challenging to move around. For instance, could you imagine a 30m single piece of glass being moved up the side of a 4km tall volcano in Hawaii, to say nothing of getting it to the island in the first place?

TMT has two additional mirrors: a secondary (3.1m) and a tertiary (elliptical, 3.5×2.5m). The secondary mirror is placed above the primary mirror in order to collect the light from it. The secondary mirror then reflects the light back down towards the tertiary mirror, which directs the light to the instrument suites.

The 30m TMT primary mirror will actually be made up of 492 smaller mirrors. Each hexagonal piece of glass being 1.4m long corner to corner, spaced 2.5mm apart, and 4.5cm thick.

It’s worth mentioning though that TMT won’t be the first telescope with segmented mirrors; it was pioneered on Keck, and since used on other observatories as well, including the Gran Telescopio Canaris. GMT, E-ELT, and the next generation James Webb Space Telescope (set to launch in 2018) will all employ segmented mirrors, too.

But mirrors, no matter how large, won’t do you much good if you can’t get a clear view of the sky – and that’s where adaptive optics comes in.

Any telescope on Earth has to contend with the atmosphere. That blanket of layers of fluid air, all swirling around and wreaking havoc on anyone trying to get a clear view of objects in space – particularly small or faint objects, which coincidentally are the focus of a great deal of astronomy nowadays.

Even with your own eyes you have to contend with atmospheric turbulence if you happen to go out stargazing. That twinkling you see when you look at stars? That is actually caused by turbulence in the atmosphere distorting the light as it passes through (the stars don’t really twinkle at all, at least not for the purpose of this discussion).

Telescopes have to contend with the same interference, and the result – if left uncorrected – are blurry images that lack the required level of detail that astronomers require to push the frontier of understanding further forward.

In order to overcome this, a way has been devised to correct for the atmosphere by manipulating the shape of the mirrors in the telescope. Two corrective mirrors in TMT will have highly precise actuators attached, which will be able to very finely reshape each mirror in real-time to create a clear image.

Left: The Galactic Center without adaptive optics (Source: Keck Observatory). Right: The Galactic Center and central black hole (labeled Sgr A*) with adaptive optics. (Source: Keck Observatory and the UCLA Galactic Center Group).

Left: The Galactic Center without adaptive optics (Source: Keck Observatory). Right: The Galactic Center and central black hole, Sgr A*, with adaptive optics (Source: Keck Observatory and the UCLA Galactic Center Group).

The physics behind this technology, in a nutshell, is that when light is disturbed by the atmosphere it creates a distortion in the light wave. By reshaping the mirrors, an opposite distortion can be created in the telescope, cancelling out the atmospheric distortion.

The TMT’s actuators are controlled by a computer system, which in turn relies on a system that measures atmospheric turbulence. This measurement is accomplished by either pointing the telescope towards a guide star or firing a laser beam into the sky to create an artificial star, which the telescope can then image in order to measure the distortion and correct for it in real time.

Similar to segmented mirrors, TMT isn’t the first telescope to make use of a new technology. Others, including Keck, have been retrofitted with these optical systems as the technology has developed over the last decade. TMT is however the first telescope ever to be constructed with adaptive optics as a core piece of the design.

TMT, many like other telescopes, is also being constructed in a place where the impact of weather (including cloud cover) will be minimized. In being on top of a mountain 4km above sea level, TMT will not have to deal with as much weather as it would at a lower elevation. Being higher up also helps to reduce some of the atmospheric distortions, as the thickest part of the atmosphere is the part closest to sea level.

An illustration of the Thirty Meter Telescope's laser guide system (Source: TMT).

An illustration of the Thirty Meter Telescope’s laser guide system (Source: TMT).

More light, higher resolution, clearer view – what do they hope to find?

Astronomers working on TMT will have a full suite of scientific instruments at their disposal, so the telescope will essentially be able to be used to study anything and everything in the cosmos. But in terms of ushering in new discoveries, in broad strokes, TMT will be ideal for studying the origin of the universe and exoplanets.

Understanding the nature of the universe, how it – and by extension we – ended up here is a significant question for science and astronomy to try to unravel. TMT will take full advantage of its massive mirror to peer back in time and capture the faintest light from the earliest moments following The Big Bang. By observing how ancient stars and galaxies formed, it will advance our understanding of why things are the way they are, and inform what the forces at work in the universe are today. TMT will also help to fill in gaps about the structure of the universe and the role that dark matter plays.

In terms of exoplanets, TMT will have the resolution to directly image worlds orbiting other stars. Using spectroscopic instruments, astronomers will also have the ability to measure the composition of those worlds – and whether they could be hospitable for life.

Thirty Meter Telescope will perceive things that no other human-built technology has ever been able to see. In so doing TMT will help to answer two of the most fundamental questions of our existence: how did we get here and are we alone.

The next generation of discovery is just beyond the horizon today, but it’s exciting to know as a human that before long, we’ll have it in our sights.

As a Canadian, it’s exciting to know that my nation will play a significant role in those discoveries and the benefits that follow from being a leader in research and technology development.

I joined Jerry Agar on Toronto radio station CFRB Newstalk 1010 to describe TMT. Listen here:

Tags: , , , , , , , , , , , , , ,